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Preamble on occupancy and N-mixture models

• Occupancy model
Data (yij)    Latent state (zi)
0-1-0           1
1-0-1           1
1-1-1           1
0-0-0           0
0-0-0           1

State model: zi ~ Bernoulli(ψi)
Observation model: yij ~ Bernoulli(zi pij)

• MacKenzie et al. (Ecol., 2002); Tyre et al. (Ecol. App., 2003)



Preamble on occupancy and N-mixture models

• “The” Nmix model
Data (yij)    Latent state (Ni)
0-3-0           3
1-0-1           2
6-3-4           9
0-0-0           0
0-0-0           2

State model: Ni ~ Poisson(λi)
Observation model: yij ~ Binomial(Ni, pij)

• Royle (Biometrics, 2004)



Outline of talk

• Introduction to Nmix family
• The “classical” Nmix model
• Assumptions and caveats
• Extensions and future directions



What are N-mixture models ?

• Class of hierarchical models with one submodel for 
measurement error (detection probability) and another for 
spatial and/or temporal variation in latent abundance states 
(N):

Nit ~ f(λi) # Model for abundance N
Cijt ~ g(Nit, θijt) # Measurement error model

• For variation of abundance (N), parametric (mixing) 
distribution is assumed -> N-mixture models

• Require data that are informative on measurement error for 
N, replicated in space (usually) and/or time (sometimes)

• Usually counts



N-mixture models as hierarchical models

• Hierarchical models (HM): nested sequence of random 
variables (observed or unobserved)

• e.g., randomised block ANCOVA (“mixed model”)

• “The” N-mixture model (“explicit” HM)

2~ ( , )i Normal   
2~ ( * , )ij i ijy Normal x  

~ ( )i iN Poisson 

~ ( , )ij i ijy Binomial N p

~ ( )x f 
~ ( , )y g x 



Beauty and power of hierarchical models

• Can combine different pieces according to data collection 
protocol, modeling objectives, ...

• Nmix models for different observation protocols
• Family of N-mixture models

• by the way: terms “hierarchical model” and “state-space 
model” are synonymous to a large extent



Types of Nmix models: “the” Nmix model

• Poisson/Binomial mixture model
Data (yij)    Latent state (Ni)
*-3-*           3
1-*-1           2
6-3-*           9
0-*-*           0
*-0-0           2         (* denote NAs; pose no problems)

State model: Ni ~ Poisson(λi)
Observation model: yij ~ Binomial(Ni, pij)

• Royle (Biometrics, 2004)



Types of Nmix models: Poisson/Bernoulli Nmix

• Data: detection/nondetection at site i during survey j
• Data (yij)    Latent state (Ni)

0-1-0           3
1-0-1           2
1-1-1           9
0-0-0           0
0-0-0           2

State model: Ni ~ Poisson(λi)
Observation model: yij ~ Bernoulli(pij)

with pij = 1 - (1-rij)Ni

and rij = per-individual detectability
• Royle & Nichols, Ecology, 2003 (“Royle-Nichols model”)



Types of Nmix models: Poisson/Multinomial Nmix

• Many variants depending on data collection protocol, 
e.g., removal sampling

• Data: counts of “removals” in each time period j (= class k)
• Data (yik)    Latent state (N)

5-1-0       8
3-1-2       9
1-1-0       5
0-0-0       0

State model: Ni ~ Poisson(λi)
Observation model: yi ~ Multinom(Ni, πik)

with πik = f(pij)
• e.g., Royle, Animal Biodiversity and Conservation, 2004; 

Dorazio et al., Biometrics, 2005



Types of Nmix models: Poisson/Multinomial Nmix

• Capture-recapture or double-observer sampling
• Data: # of each capture history k: e.g., 100, 010, 001, ... 
• Data (yik)     Latent state (Ni)

2-1-3-0-0-1-0     9
0-1-0-0-3-1-0       7
0-0-1-0-0-0-0       1

State model: Ni ~ Poisson(λi)
Observation model: yi ~ Multinom(Ni, πik)

with πik = f(pij)
• e.g., Royle et al., Ecol. Mono., 2007; 

Webster et al, JABES, 2008



Types of Nmix models: Poisson/Multinomial Nmix

• Distance sampling (with binned distances)
• Data: Counts in each distance class k
• Data (yik)     Latent state (Ni)

2-1-3     8
3-1-0       5
1-0-0       2

State model: Ni ~ Poisson(λi)
Observation model: yi ~ Multinom(Ni, πik)

with πik = f(pi)

• e.g., Royle et al., Ecol., 2004; Sillett et al, Ecol.Appl., 2012



Types of Nmix models: Poisson/Poisson Nmix

• Counts of animal cues etc.
• Vector of counts, e.g., of fecal pellets, tracks along transect
• Data (yij)     Latent state (Ni)

10-12-8     8
3-1-0       5
3-2-5       2

State model: Ni ~ Poisson(λi)
Observation model: yij ~ Poisson(Ni * θij)

• e.g., Stanley & Royle, JWM, 2005; 
Guillera-Arroita et al., JABES, 2011



Other types of Nmix models

• Other published examples, by switching type of distribution 
for either abundance or detection

• see later for some alternative abundance models 
• ditto for elaborations on detection model



Nmix models and occupancy models

• Seminal role of occupancy model of MacKenzie et al. 
(Ecology, 2002) and Tyre et al. (Ecol.Appl., 2003)

• Historically: 
site-occ  (2002/3)  -> Royle/Nichols (2003)  ->  Nmix (2004)

zi ~ Bern(ψi) Ni ~ Pois(λi)                Ni ~ Pois(λi)
yij ~ Bern(zi*pij)          yij ~ Bern(pij)               yij ~ Bin(Ni, pij)

• So, are Nmix models site-occupancy models ?



Are Nmix models site-occupancy models ?

• Yes, since any description of spatio-temporal patterns in 
abundance can be turned into a description in terms of 
occurrence/occupancy

• Occurrence (z) is deterministic function of abundance (N):
z = I(N > 0)

• Analogous with occupancy probability (ψ) :
ψ = Prob(N > 0)

• Occupancy: “the poor man’s abundance”
• see, e.g., Dorazio, Ecology, 2007



Are Nmix models site-occupancy models ?

• No, since Nmix models are not a special case of occupancy 
models

• Rather, both instances of “explicit” hierarchical models
• by “explicit” we mean that parameters have explicit 

biological meaning, e.g., abundance (N), occurrence (z)
• Unlike “expected abundance” or “expected occurrence” in 

many other hierarchical models for abundance or distribution
• (Calling Nmix models would be like calling all GLMs Probit 

regressions)



Should counts ever be degraded to det/nondet data ? 

• Never !
• Only if absolutely have to, e.g. if assumptions of Nmix not 

warranted
• see later



An exercise in hierarchical modeling

• Re-invent the “classical” Nmix model from first principles
• most basic extension to model: adding covariates
• -> exercise on black board 



Different descriptions of Nmix model

• HM for counts replicated at R sites and T occasions with one 
mixture distribution (with param λ) for latent abundance 
states (N) and another distribution for observation process 
(with param p)

• “Explicit” HM: Parameters N have explicit biological meaning 
(if model well-specified)

• Nested GLM: Poisson GLM for N plus logistic regression as 
measurement error model

• Non-standard GLMM: logistic regression with nonstandard 
random effects (not normal, not continuous)



The need for replication

• but see work by Lele, Moreno, Solymos (fit Nmix to 
unreplicated data using penalized likelihood)

• Also F. Korner (unpublished ms)



Fitting of Nmix model

• Likelihood or Bayesian analysis
• Software: MARK, PRESENCE, R package unmarked, BUGS 

family, R, Matlab, PyMC, ....
• Likelihood analysis:



Fitting of Nmix model

• Likelihood or Bayesian analysis
• Software: MARK, PRESENCE, R package unmarked, BUGS 

family, R, Matlab, PyMC, ....
• Likelihood analysis:

• Infinite summation: replace infinity with reasonable upper 
summation limit (K) for N, e.g., 50, 100, ...

• Choose K such that likelihood for N>K approx. 0



Likelihood analysis of Nmix model

• e.g., function pcount() in R package unmarked:

pcount(formula, data, K, mixture=c("P", "NB", "ZIP"),
starts, method="BFGS", se=TRUE, engine=c("C", "R"), 

...)

• formula: R definition of linear models, e.g., 
~ 1 ~ 1 intercepts for p and N
~ wind ~ elev wind affects p, elevation N

• K: summation limit for likelihood evaluation: default 
max(observed count) + 100

• mixture: Poisson, Negative binomial, Zero-inflated Poisson 
(see later)



Likelihood analysis of Nmix model

• Advantages of likelihood analysis of Nmix model in 
unmarked (and MARK, PRESENCE):
- get MLEs fast
- linear model speficifation as usual in R
- model selection using AIC or LRT
- numerically reliable

• Disadvantages:
- can’t do nonstandard models (but most interesting 

data/models are nonstandard ....)
- e.g., no random effects
- no additional levels of hierarchy in HM
- but see unmarked function gpcount(): fits TE emigration 

Nmix (Chandler et al., Ecology, 2011)



Bayesian analysis of Nmix model in BUGS family

• latent states N not removed by integration/summation
• N updated as part of MCMC sampling scheme
• specify hierarchical model almost exactly as written in 

algebra
• many extensions and nonstandard models trivial to code



Bayesian analysis of Nmix model in BUGS family

model {
# Priors
lambda ~ dunif(0, 50)
p ~ dunif(0, 1)

# Likelihood
for (i in 1:R) {
# True state model for the only partially observed true state

N[i] ~ dpois(lambda) # True abundance state N at site i
for (j in 1:T) {

# Observation model for the actual observations
y[i,j] ~ dbin(p, N[i]) # Counts at i and j

}
z[i] <-step(N[i]-1) # Occurrence indicator
}
# Derived quantities
total.N <- sum(N[]) # Total population size ar R sites
occ.fs <- mean(occ[]) # Finite sample occupancy
}



Bayesian analysis of Nmix model

• Advantages:
- model structure totally transparent (unlike in R)
- usual advantages of Bayesian inference: 

- exact inference (no large-sample approximations)
- random effects and other extensions trivial
- estimates of latent variables (N) trivial; can do 

calculations on them
- error propagation in derived quantities trivial (e.g., sum 
of N over R sites)
- can introduce external information (informative priors)

• Disadvantages:
- usual disadvantages of Bayesian inference: e.g., prior 

sensitivity
- usual disadvantage of MCMC-based analysis: slow !
- convergence assessment sometimes difficult



Benefits of Nmix model

• Conceptionally simple and plausible model
• Heart of model: Poisson GLM (we all know Poisson GLMs !)
• Estimate and model abundance (N) from “cheap” data
• “Cheap”: counts of unmarked individuals without individual 

identification (*)
• More data can be collected: e.g., more sites, more times, 

more temporal reps 
• More information, e.g., about environmental relationships of 

abundance

(*) BUT see next slide !



Assumptions of Nmix model

• Closure: Ni constant over all surveys
• (Note closure assumption more severe than in site-occ)
• No individual ID: across occasions ID ignored 
• But ID not ignored within occasion ! -> must exclude false-

positives (double counts)
• Ni individuals detected independently
• All Ni individuals at occasion j have same detection 

probability pij (can only model pij): for instance, ignores 
effect of distance

• Parametric assumptions of model: 
- Poisson (with covariates, random effects etc.)
- Binomial (with covariates, random effects etc.)



Test of assumptions

• Closure: this is a judgement:
- Is study duration short relative to dynamics of system ?
- Scale of movement of individuals relative to scale of 

sample plots (Efford & Dawson, Ecosphere, 2012)
• No-false-positives: similar judgment considerations, e.g., 

don’t use model for (large) flocks
• Independent detections: ditto
• Homogeneity of detection (pij) and parametric assumptions: 

- Parametric bootstrap (likelihood analysis) GOF
- Bayesian p-value GOF / posterior predictive checks 

(MCMC analysis)
- in latter can test abundance and detection models 

separately (see p. 196 in Link & Barker, 2010)



Effects of assumptions violations

• Lack of closure: conventional wisdom: Ni refers to some 
superpopulation associated with sample plot

• can view as p-corrected index of per plot-abundance
• may be meaningless sometimes (i.e., when too much 

“temporary emigration”)
• not sure about false positives, independent detections, 

parametric model assumptions ? 
• (but see Martin et al., MEE, 2011)



Remedies to assumption violations

• Closure: 
- design stage: make total study period short relative to 

system dynamics
- analysis stage: discard some of the data; open models 

(see later); do occupancy modeling instead
• No individual ID: not so much
• Independence of detection: model non-independence (e.g., 

Martin et al., MEE, 2011; Dorazio et al., MEE, 2012)
• Homogeneity of pij: not much to be done
• Parametric assumptions of model (Poisson, Binomial, etc):

add complexity to model, e.g., covariates, random effects; 
see later



Identifiability problems in “the” Nmix ?

• Bill Link (unpublished ms):
- intercept estimates highly correlated
- with correlation 1, Nmix reduces to limiting case of Poisson 
model with random site effects

• Emily Dennis et al. (unpublished note): similar observations
• Couturier et al. (JWM, 2013): MLEs sensitive to choice of K, 

especially for small p
• problems particularly with small p
• hence, stay tuned for new findings, be wary with small p
• Possible remedies: Jack up p, use weakly informative priors 

(or constraints on K), collect extra data, use other member 
of Nmix family if can (or else Poisson random-effects model; 
see work by Link and Sauer on BBS analyses)



Use simulation to check quality of inferences

• trivial with program R, by varying #sites, #nreps, average N 
and p

• ex. MLEs
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Two illustrations



(A) Really tricky simulated data
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• Importance of accounting for p !



• 2 * 267 1km2 quads, 3 reps/breeding season (15 April-30 
June)

(B) MHB: Swiss Breeding Bird survey



• Territory mapping: record all locations of all species
• Here: reduce to counts for each survey

(B) MHB: Swiss Breeding Bird survey



• Andy Royle’s favourite Swiss bird: the willow tit
• estimate and model abundance and map things
• MLEs from unmarked, model selection using AIC, 

parametric bootstrap GOF  

(B) MHB: Swiss Breeding Bird survey



• e.g., 

system.time(fm13 <- pcount(~day + (day^2) 
~forest+elev+I(elev^2)+ I(elev^3)+ length, mhb.umf))

• Best Poisson mixture model did not fit
• Negative Binomial (≈ overdispersed Poisson) did fit

(B) MHB: Swiss Breeding Bird survey



• what can we do after fitting the model ?
• -> try to understand what model is telling us: predictions !

• National population size estimate: ~ 380,000
• Bootstrap variance estimate: (132,110 - 1,193,516)
• Important assumption ???

(B) MHB: Swiss Breeding Bird survey
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Space in Nmix and related models

• adding up plot-specific N estimates assumes plot area is 
known

• this is not usually strictly true: holes, edge territories
• would have to use Nmix with distance sampling or some sort 

of spatially explicit capture-recapture to relax the “known-
area assumption”

• density and N can only be treated interchangeably when 
area known

• another assumption in many applications of Nmix models (or 
any kind of population size estimation)

• Chandler et al., AOAS, 2013: Nmix with underlying spatial 
model of animals



Time-for-space substitution in the Nmix

• instead of R spatial replicates in single season could have R 
temporal replicates (= seasons) of a single (or few sites)

• e.g., year             observed data
1990 9-10-11

1991 4-2-6
...

2012 7-4-4

• Seems to work well for >20 years; do simulations !
• example Yamaura et al., JAPPL, 2011 (community Nmix 

model)



Extensions of the model (for all Nmix family)

• add effects of measured covariates
• changes in abundance model (mixing distribution)
• changes in detection model
• add effects of unmeasured covariates (random effects)
• add space (e.g., spatial exponential correlation function, CAR 

random site effects)
• multiple species, abundance-based community models
• change closed model to open models:

- “trend models”, Royle & Dorazio (2008); 
- implicit dynamics model, Chandler et al., Ecology, 2011
- explicit dynamics model, Dail & Madsen, Biometrics, 2011



Extensions 1: covariates

• Never forget: heart of model is Poisson GLM, with logistic 
regression measurement error model attached

• All you can do with a Poisson or a Binomial GLM can also do 
to a Nmix model

• Adding covariates
State model: Ni ~ Poisson(λi)
Observation model: yij ~ Binomial(Ni, pij)

• add log and logit linear regression models:
log(λi) = α0 + α1 * xi,1

logit(pij) = β0 + β1 * xi,1 + β2 * xi,2 + β3 * xij,3



Extensions 2: other abundance models

• Account for overdispersion: e.g., zero-inflation (1), Negative 
Binomial (2), Poisson log-normal (3):
1. State models: zi ~ Bernoulli(ψi)

Ni ~ Poisson(zi * λi)
Observation model: yij ~ Binomial(Ni, pij)

2. State model: Ni ~ Negative Binomial(λi, alpha)
Observation model: yij ~ Binomial(Ni, pij)

3. State model: Ni ~ Poisson(λi)
log(λi) = αi, with αi ~ Normal(μα,σ) 

Observation model: yij ~ Binomial(Ni, pij)



Extensions 3: other detection models (overdisp.)

• Can acccount for effects of unobserved, latent covariates at 
site level (1), occasion level (2) or site-by-occasion level (3):

State model: Ni ~ Poisson(λi)
Observation model: yij ~ Binomial(Ni, pij)

1. logit(pij) = βi, with βi ~ Normal(μβ,σ) 
2. logit(pij) = βj, with βj ~ Normal(μβ,σ) 
3. logit(pij) = βij, with βij ~ Normal(μβ,σ) 



Extensions 4: adding space

• Standard models assume observations independent, given 
covariates

• Spatial or other dependencies may remain
• Add correlated, site-specific random effects :

Ni ~ Poisson(λi)
log(λi) = αi, with αi ~ Normal(μα, Σ) 
Σ = distance-dependent variance-covariance matrix

• e.g., spatial-exponential correlation: Royle et al., Ecol. 
Mono., 2007; Webster et al., JABES, 2008; Post van den 
Burg, JAPPL, 2011; Chelgren et al., Ecology, 2011

• conditional-autoregressive (CAR) models
• can both be implemented in WinBUGS/OpenBUGS (or MCMC 

coded up by hand)
• Computationally expensive !



Extensions 5: multi-species (community) models

• joint Nmix model for all species observed in a community
• can use data-augmentation to estimate # species never seen 

(Royle et al., JCGS, 2007; Royle and Dorazio, 2008)
• express occurrence, and therefore species richness, as 

deterministic function of abundance
• usual advantage of random effects modeling: improved 

inferences for rare species (see e.g., Zipkin et al., JAPPL, 
2009)

• examples: Yamaura et al., JAPPL, 2012; Chandler et al., 
Conservation Biology, in press



Extensions 6: open models

• three motivations: 
- account for closure assumption violation
- estimate trends
- explicitly estimate dynamics

• three models: 
- Dodd & Dorazio, Herpetologica, 2004; 
Royle & Dorazio (book 2008); 
Kéry et al., JAPPL, 2009;
Kéry & Schaub (book, 2012)  
(treat years as a block, trend models)  
- Chandler et al., Ecology, 2011

(implicit dynamics model)
- Dail & Madsen, Biometrics, 2011

(explicit dynamics model)



Treat years as a block approach (and trends)

• Fit separate parameters in abundance model for each year
Nik ~ Poisson(λik)            (k indexes years)
log(λi) = αk + stuff
yijk ~ Binomial(Ni, pij)

• can constrain annual estimates of log(expected N)
e.g., αk = α0 + β * yeark

• β is trend parameter (see Royle & Dorazio, 2008; 
Kéry et al., JAPPL, 2009)



Implicit dynamics: Chandler et al. (2011)

• multi-scale (3-level) model with one level for availability (1-
temporary emigration)

Superpopulation model:  Mi ~ Poisson(λ)
Random temporary emigration: Nij ~ Binomial(Mi,θ) 
Observation model: yijk ~ Binomial(Ni, p)

• θ = Prob. of being exposed to sampling (1 – TE prob.)
• Assumes random temporary emigration described by θ
• implicit dynamics: random “in/out”  
• fitting function in unmarked: gpcount()



Explicit dynamics: the Dail-Madsen (2011) model

• explicit demographic model (population dynamics model)

Initial condition:  Ni1 ~ Poisson(λ)
Survival process: Sit ~ Binomial(Nit-1, ω)
Recruitment process: Git ~ Poisson(Nit-1 * γ)
Annual population size: Nit = Sit + Git

Observation model: yitk ~ Binomial(Nit, p)

• Sit: latent variable, survivors
• Git: latent variable, recruits
• ω: apparent survival rate
• γ: recruitment rate



Explicit dynamics: the Dail-Madsen (2011) model

• Application: Chandler et al., JAPPL, 2011
• mythical model: can estimate population dynamics from 

unmarked individuals
• but: makes strong parametric assumptions
• has produced unrealistic survival estimates
• fitting function pcountOpen() in unmarked: VERY SLOW !

• can be fit in JAGS, but not Win/OpenBUGS (no clue why)
• more research is needed ....

• 2-3-year postdoc partly on this model 
available at Swiss Ornithological 
Institute RIGHT NOW
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